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SUMMARY

The prediction of the flow field in transonic shock-wave boundary-layer
interaction 1s an aerodynamic problem of immense practical importance in both
external aerodynamics and turbomachinery applications since this flow phenomena
has a large influence on the overall aerodynamic forces and often determines the
upper limit in performance of each aerodynamic component. The main objective of
the present research program is the development of an analytical/computational
procedure for predicting the detailed properties of the flow in the vicinity of
an imbedded transonic shock wave interacting with a turbulent boundary layer in
cases where the shock wave is of sufficient strength to result in flow
separation. This objective is being pursued through the development of a
viscous-inviscid strong interaction model in which the inviscid flow is analyzed
with a compressible stream function analysis including rotational flow effects,
and the viscous flow is analyzed with a generalized inverse boundary-layer
analysis which accounts for normal pressure gradients and imbedded shock waves.
In the present program work on each of these analyses has been performed and the
progress to date is reported herein. :

The compressible stream function analysis of Hafez has been extended to
flows with upstream vorticity and calculations have been made both for subsonic
nonuniform flow over a thin airfoil and transonic shock-wave boundary-layer
interaction. Comparisons are presented of these results with the previous Euler
calculations of Steger and Lomax for the airfoil flow and the asymptotic analysis
of Melnik and Grossman for a normal shock impinging on a turbulent boundary
layer. Overall the agreement obtained between the present inviscid analysis and
these previous results is good thereby verifying the present formulation and
numerical procedure for the solution of the compressible stream function equation
including vorticity. In addition preliminary results have been obtained with
this inviscid method for the transonic shock boundary layer interaction studied
experimentally by Kooi. These results indicate that for cases in which the shock
wave is of sufficient strength to separate boundary layer, inclusion of both the
boundary layer displacement thickness and upstream vorticity have a significant
effect on the computed inviscid flow field.

Guided by the detailed experimental measurements and conclusions made by
Kooi for separated transonic shock-wave boundary-layer interaction, a viscous
formulation has been established which includes the variation of the pressure
across the boundary layer. 1In this flow model, it is assumed that the y-
variation of the streamwise pressure gradient is that deduced in the rotational
inviscid analysis over the displacement body, the definition of which has been
suitably generalized to account for the variation of the inviscid flow on the
scale of the boundary-layer thickness, In this viscous formulation, the
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governing equations and boundary conditions have been derived in such a manner
that the boundary-layer solution blends smoothly into the inviscid solution as
the edge of the viscous layer is approached. This viscous formulation is a
generalization of the first-order inverse boundary-layer analysis previously
developed by Carter for the analysis of separated turbulent flows. Results are
presented for a model problem of incompressible separated flow which demonstrates
that the present formulation is stable and is capable of solving separated
turbulent flows with significant variation in the pressure across the boundary
layer. In addition preliminary viscous flow results have been obtained for the
Kooi transonic case by solving the first-order inverse boundary-layer equations
for a prescribed displacement thickness which was measured experimentally by
Kooi. The computed results are in qualitative agreement with the data, but they
indicate a larger separation bubble than that measured by Kooi. Further work is
needed to determine whether this difference is due to higher order boundary-layer
effects or turbulence modeling or both.

b e B, Benes S o et
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INTRODUCTION

The intersection of a shock wave with a turbulent boundary layer in
transonic flow results in a complex flow pattern for which a reliable and
accurate prediction method has yet to be developed. The problem is complicated
by the fact that the shock is generally thought to penetrate the boundary layer
thereby inducing discontinuities in the boundary-layer flow variables in addition
to the large streamwise changes which occur as the turbulent boundary layer
responds to a large pressure increase. As the shock strength is increased flow
separation occurs; this in turn displaces the outer inviscid flow, and
consequently the shock location and detailed flow field in the vicinity of the
shock are significantly different from that predicted by inviscid flow. The
determination of the reattachment location (if it occurs at all) and thus the
extent of the separated region is also an important part of an aerodynamic
analysis of transonic flows containing shock waves.

Transonic shock wave boundary-layer interaction is an aerodynamic problem of
immense practical importance because of the frequent occurrence of this phenomena
in many types of configurations. Examples include airfoils in supercritical flow
-~ both external and internal (turbomachinery applications), exhaust nozzles, and
engine inlets, These interactions can lead to premature separation which can
result in buffeting, large decreases in drag, and reduced engine performance. 1In
addition, it is difficult to predict full scale shock interaction phenomena from
smaller scale wind tunnel data because of the current inability to match
experimentally full scale Reynolds number flows. Hence, there is a strong need
to develop analytical and computational techniques for the analysis of the
problem of transonic shock wave boundary-layer interaction,

The overall goal of this research program is the development of a reliable
and accurate method for predicting the detailed properties of the flow in the
vicinity of an imbedded transonic shock interacting with a turbulent boundary
layer. This goal is being pursued through the development of a viscous-inviscid
interaction model suitably generalized to account for rotational flow effects in
the inviscid flow analysis and normal pressure gradients and imbedded shock waves
in the viscous analysis, In the past year work has been performed on the
individual inviscid and viscous components of this interaction analysis and these
developments are reported herein, In the next phase of this work a technique
will be developed for coupling these analyses together for the iterative
calculation of the viscous and inviscid governing equations for the solution of
transonic shock-wave boundary-layer interaction where the shock wave is of
sufficient strength to result in flow separation.
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BACKGROUND

A number of different approaches have been pursued in attempts to develop a
reliable and accurate prediction method for transonic and shock-wave boundary-
layer interaction. There have been numerous attempts (e.g., see Refs. 1-2) to
solve numerically the Navier-Stokes equations for this flow field; but to date
the comparisons of these solutions with experimental data have not been partic-
ularly good. This lack of agreement is probably due to the current lack of an
adequate turbulence model for this type of strongly interacting flow and the
inability of most grid distributions used in the numerical solutions of the
Navier-Stokes equations to resolve adequately the fine details of the flow. It
is unlikely that this type of brute force approach on such a multiple scale
problem will yield a practical engineering method in the near future; nonethe-
less, this approach can serve to provide benchmark solutions to evaluate more
expedient, but approximate techniques. An earlier example of this type of
evaluation is the comparison between the Navier-Stokes solutions of Carter (Ref.
3) and the interacting boundary-layer solutions of Werle and Vatsa (Ref. 4) for
supersonic laminar separated flow. A more recent example of this type of
comparison is presented in Ref. 5 in which the Navier-Stokes calculations of
Swanson are compared with the interacting boundary-layer solutions of Vatsa and
Carter for the subsonic turbulent separated flow over a boattail-sting configura-
tion,

A number of approximate techniques have been developed for the analysis of
transonic shock-wave boundary-layer interaction. These methods include both the
classical boundary layer/inviscid matching procedure due to Prandtl and the more
recent inverse boundary-layer/inviscid matching procedure, 1In the classical
approach, as exemplified by the approaches of Garabedian, Korn, and Bauer (Ref.
6) and Carlson (Ref. 7), the boundary-layer solution is obtained in a conven-
tional manner by imposing the pressure distribution deduced from the inviscid
solution. It is well known that a direct solution (pressure prescribed) of the
boundary-layer equations is singular at separation, provided the boundary-layer
solution is accurately obtained. In Refs. 6 and 7 this separation singularity
does not occur because the approximate boundary-layer solution obtained from the
integral form of the boundary-layer equations is not sufficiently accurate. 1In
fact, it is difficult to estimate the point of separation in these approaches and
thus an empirical criterion is used to estimate separation; reattachment is
determined from an ad hoc shape factor criterion,

The separation singularity in the boundary-layer equations can be eliminated
by solving the equations inversely; that is, instead of prescribing the pressure
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as is done in the direct approach, another quantity such as the displacement
thickness (Ref. 8 and 9) or skin friction (Refs. 9 and 10) is prescribed. The
pressure distribution is computed from the resulting boundary-layer solution,
Since the solution at separation is regular it can be continued downstream into
the separated region and through the point of reattachment. The inverse
boundary-layer approach has been improved significantly since the earlier works
cited above, and in fact, has now been developed (see Ref. 11) to the point
where compressible turbulent separated flows can be routinely calculated. The
next step in the use of the inverse boundary-layer theory is that it has to be
iteratively combined with an inviscid calculation so that the displacement
thickness interaction of the viscous and inviscid flow can be computed. Several
techniques have been developed, but the recent viscous/inviscid interaction
technique developed by Carter (Ref. 12) is beginning to receive wide use (Refs.
13-16) due to its simplicity and rapid convergence. A similar procedure has been
developed by LeBalleur (Ref. 17) which he used to couple an inviscid analysis
with an inverse integral boundary-layer method for the computation of transonic
flow over a lifting airfoil. Recently Wigton (Ref. 18) has performed a von
Neumann stability analysis of both the LeBalleur and Carter coupling procedures
for both subsonic and supersonic flows.

At the present time, the Carter iterative technique, in which the inverse
finite-difference boundary-layer method of Ref. 1l is coupled to a transonic
relaxation solution of the full potential equation is being applied to a
transonic flow problem with the support of the Office of Naval Research (Ref.
19). The purpose of this contract is to determine if this interaction procedure,
previously demonstrated for subsonic flows, can be applied to flows with shock
waves. Despite the approximate nature of these calculations, which is due to the
neglect of imbedded shock effects, the results of this investigation should
provide information which will facilitate the detailed transonic analysis
discussed herein. Typical results which have been obtained thus far in this
contract, using both the nonconservative (NC) potential flow analysis of South
and Jameson (Ref. 20) and the fully conservative (FC) potential flow analysis of
Green (Ref. 21), are shown in Fig. 1 in which comparisons are made with
experimental data and the Navier-Stokes results obtained at NASA-Ames (Ref. 2)
for the case of shock induced separated flow over an axisymmetric body.

Interaction techniques based on an inverse boundary-layer approach are
certainly an improvement over direct procedures since the separated flow can be
computed free of singularities. Nonetheless, the fundamental flow model used in
the above-mentioned interaction procedures assumes that the shock wave does not
penetrate the boundary layer and furthermore that normal pressure gradients are
negligible, This type of model is applicable to laminar supersonic flows in
which shock boundary-layer interaction occurs; it has successfully been used by
many investigators such as Werle and Vatsa (Ref. 4) in their analysis of the
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interacting boundary-layer equations. In the turbulent case the flow model is
quite different from that in laminar flow as discussed by Melnik (Ref. 22) and
others. One important difference 1is that in the turbulent case the streamwise
length scale of the interaction is quite small (less than 10 upstream boundary-
layer thicknesses) thereby resulting in significant flow turning and normal
pressure gradients as the turbulent boundary layer responds to the shock wave.
Most of this flow turning occurs in the outer part of the turbulent boundary
layer which, as first observed by Lighthill (Ref. 23) acts essentially as an
inviscid rotational layer. In the transonic case, the interaction of a normal
shock wave with a turbulent boundary layer results in two distinct flow patterns
depending on whether the shock is of sufficient strength to separate the boundary
layer., These flow patterns are shown schematically in Fig, 2. In the case of
attached flow, a single shock appears whereas if the flow is separated, a lamda
shock results. It is not known if the appearance of the lamda shock occurs sim
ultaneously with the occurrence of the flow separation; however, these two phen-
omena are generally associated with each other. Another important issue in the
turbulent shock boundary-layer interaction problem is whether or not the shock
wave penetrates the boundary layer, that is, do the compression waves which re-
sult when the shock strikes the rotational flow coalesce inside or outside of the
viscous layer? The location of the shock formation depends essentially on the
oncoming Mach number which in turn determines the sonic line location. For Mach
numbers near one, where the shock is weak, the sonic line lies near the boundary-
layer edge. As the Mach number is increased, the sonic line moves closer to the
surface and thus focusing of the compression waves, which eminate from the sonic
line occurs lower in the boundary layer. In the experimental studies of Kooi
(Ref. 24) on transonic shock wave boundary-layer interaction, it was observed
that at a free stream Mach number of 1.40 compression wave coalescence occurs
well outside the boundary layer to form the forward leg of the oblique shock. At
a higher Mach number of 1,54 East (Ref. 25) observed that "the oblique shock was
formed at the edge or probably even inside the boundary layer". Clearly, the
development of a theoretical method which allows for imbedded shock effects would
increase the current ability to quantitatively predict the influence of Mach and
Reynolds number on transonic interactions.

In recent years, asymptotic methods of analysis have been used by Melnik and
Grossman (Ref. 26), Adamson and Feo (Ref. 27), and by Messiter (Ref. 28) for
normal and oblique shock waves impinging on a turbulent boundary layer over a
flat plate in transonic flow. At the present time, only the attached flow case
has been treated. The use of asymptotic theory has delineated the mathematical
structure of the flow field and has shown that, in the absence of flow separa-
tion, the outer layer, comprised of the external flow and the main part of the
boundary layer which is represented as an inviscid rotational flow, is unaffected
by flow changes in the thin viscous sublayer near the wall. This flow behavior
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points out the large difference between laminar and turbulent interactions since
in the laminar case the main part of the boundary layer is affected by the growth
of the viscous sublayer no matter how weak the shock wave may be, For the turbu-
lent attached flow case, Melnik and Grossman (Ref. 1) numerically obtained solu-
tions to the inviscid nonlinear governing equations which resulted from their
asymptotic analysis. Their solutions demonstrate that the mechanism which causes
the shock to bend forward and blend smoothly into the sonic line is contained
entirely in the interaction between the inviscid rotational flow and externally
imposed shock wave. Their analysis applies to the weak viscous interaction case
shown in Fig. 2; the objective of the present program, which 1is described in the
remainder of this annual report, is the development of a procedure for analyzing
the strong interaction case also shown in Fig. 2.
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VISCOUS-INVISCID INTERACTION FLOW MODEL

For the strong interaction flow problem shown in Fig. 2, a flow model has
not as yet been developed from asymptotic theory. Instead, we are currently
developing an analytical model, shown schematically in Fig. 3, which is basically
an extension of that developed from asymptotic theory for weak interactions but
modified as needed for the more severe case when flow separation occurs. This
model has similar concepts to that recently proposed by LeBalleur, et al. (Ref,
29) and East (Ref. 30). 1In this model, as in the weak interaction case, the
outer part of the turbulent boundary layer is treated as an inviscid rotational
flow where the rotationality is due both to the upstream boundary layer as well
as to the curved shock waves. This inviscid rotational flow is analyzed using
the recently developed compressible stream function approach of Hafez (Ref. 31).
In contrast to the potential approach, the stream function analysis 1s applicable
to flows in which the vorticity is non-zero. In the weak interaction case the
viscous layer is passive and does not have to be considered to determine the
surface pressure; in the strong interaction case the viscous layer is active and
is represented by a generalized displacement surface. The displacement surface
is deduced as usual by asymptotic matching of the viscous and inviscid flows,
suitably generalized to account for the variation of the inviscid rotational flow
in the outer part of the viscous region. Figure 4 shows the matching of the
viscous and inviscid velocity profiles as the edge of the viscous layer is
approached.

The viscous-layer analysis in this flow model extends from the wall to the
edge of the viscous region as shown in Fig. 3, but differs from a conventional
boundary-layer analysis in that normal pressure gradients and imbedded shock
effects are included by a generalization of the inverse boundary-layer procedure
of Carter (Ref. 32) which was specifically developed for the analysis of
separated flows. This flow model results in a large overlap region between the
vigcous and inviscid region in the outer part of the boundary layer; to align
these analyses the viscous equations are solved subject to the imposed lateral
pressure variation deduced in the inviscid calculation. An alternative formula-
tion which will be developed in next year's program is to solve the viscous-layer
equations only from the wall to the inner part of the outer inviscid rotational-
layer. This approach probably avoids the issue of including normal pressure
gradients in the viscous layer analysis but now a difficult matching problem is
encountered in matching the viscous and inviscid solutions in the interior of the
boundary layer where the shear is non-zero.
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INVISCID ANALYSIS

The compressible stream function analysis of Ha._:z (Ref. 31) had previously
been applied to problems in which the freestream flow was irrotational. For
rotational flows, the stream function equation is written as

9 1 9 9 1 3
Ix (a ﬁ)*w(w fyk)‘ Tw (1)

where the vorticity can be rewritten, using Crocco's relation, in terms of the
entropy S and the total enthalpy H, as

Equations (1) and (2) can be solved iteratively where the vorticity is evaluated
from the previous iterations with the pressure given by

Y S/c
v

= fljr— e (3)

P Y™

[ ]

and the density deduced from
.
- Y- -

p= (-1 wln-Xzlw2 (u2 + v2) e S/R ()

This formulation is equivalent to that given by the Euler equations which are
based on the conservation laws for mass, momentum and energy.

As a test of the above stream function formulation, calculations were
performed for the accelerated and heated subsonic flow over a 6 percent thick
parabolic arc airfoil, previously analyzed by Steger and Lomax (Ref. 33) with the
Euler equations, In this initial test the analysis was simplified by assuming
that the entropy and total enthalpy and hence, the vorticity were a function of
the distance y normal to the airfoil line of symmetry. Hence, the streamlines
along which the upstream vorticity is convected are assumed to be parallel.

The computed pressure distributions on the airfoil for M, = .4 are shown
in Fig. 5 in comparison with the solutions of the Euler equations deduced by
Steger and Lomax (Ref. 33). For the irrotational case (8§ = 0) excellent
agreement is observed for the airfoil pressure distribution. As the magnitude of
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the nonuniformity of the freestream is increased the two results diverge slightly
apparently due to the parallel flow approximation in the present analysis. This
limitation can be straightforwardly relieved by using a one-dimensional spline
fit of the entropy and total enthalpy as a function of the stream function in
order to account for the precise dependence of the voriticity on the streamline
location,

Figure 6 shows the convergence history for the present calculation in which
a variable grid of 60 by 40 grid points were distributed over a computational
region which extended about 3 chords in the x-direction and 3.5 chords in the y-
direction. Figure 6 shows that Rmax’ the maximum residual in the finite-
difference equations between two successive iterations, decreases rapidly with
the present numerical scheme and, suprisingly, the convergence is more rapid with
the inclusion of finite vorticity in the governing equations.

A second problem which has been analyzed in the present effort is the
interaction of a normal shock wave with the outer inviscid rotational part of a
turbulent boundary layer. The particular problem chosen is the weak interaction
case analyzed by Melnik and Grossman (Ref. 26) which was discussed earlier and is
shown schematically in Fig. 2. Melnik and Grossman obtained numerical solutions
to the asymptotic equations which they derived in the double limit of Reynolds
number approaching infinity and free stream Mach number approaching unity. They
expressed this double limit in terms of a similarity parameter, X¢» defined by

X, = —p (5)

where € = Ycg /2, which is the nondimensional friction velocity of the
approaching boundary layer. In the limit of infinite Reynolds number, €
approaches zero. The asymptotic formulation which was derived by Melnik and
Grossman has explicit dependence only on the similarity parameter X,, not the
individual Mach and Reynolds numbers,

In order to make a comparison of the numerical results from the present
formulation with the asymptotic results of Melnik and Grossman, it was necessary
to assume a value of the free stream Mach number, Since the Melnik-Grossman
theory is limited to the weak interaction (non-separated) regime for which the
Mach number is limited to 1.2 and smaller, values of M, = 1.12, 1.08 and 1.04
were chosen for the present comparison. Melnik and Grossman presented
calculations for Xy = 7.5 which results in € = ,034, .022 and .0l1 for the
three respective Mach numbers. The incoming velocity profile was specified in
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the same manner as Melnik and Grossman by prescribing
u=1+¢€u;(y (6)

where u;(y) is Coles' (Ref. 34) wall-wake representation of a turbulent
boundary layer.

Figure 7 shows a comparison of the wall pressure distributions obtained from
the present analysis with that computed by Melnik and Grossman., It is seen from
both calculations that the interaction of the incident normal shock, which is
located at X = 0, with the incoming rotational flow results in a continuous but
steep pressure rise at the wall, as is observed experimentally. The short
streamwise length scale of this interaction is evident from Fig. 7 since most of
the pressure rise occurs in about 8 incoming boundary layer thicknesses (50).

It is observed in Fig. 7 that the pressure distributions computed from the
present analysis are well correlated by the similarity variables established by
the asymptotic analysis of Melnik and Grossman. While the agreement between the
present solutions and that of Melnik and Grossman can be considered encouraging
in an overall sense, it is not clear why differences remain. The most obvious
candidate for explaining the differences is that no attempt was made in this
comparison to insure that the mesh sizes were the same. Hence, further calcu-
latiors are needed in which the mesh size 1is reduced in the present analysis with
this mesh reduction guided by the asymptotic analysis of Melnik and Grossman,

Figure 8 shows the convergence history of the present numerical procedure
for this transonic case where M, = 1.2, In the supersonic region, a retarded
density technique which was developed by Hafez, South and Murman (Ref. 35), was
used to introduce artificial viscosity which is necessary for convergence. The
retarded density is given by

P=p-u %% Ax (7)
where W is a switch factor given by

W= max (0, 1 ~ ;% ) (8)

where M is the local Mach number. Calculations were also made with a constant
value of M independent of whether the flow is subsonic, It is observed in Fig. 8
that the use of a constant value of artificial viscosity coefficient results in a
more rapid convergence rate than that found with a variable viscosity coeffic-
ient. This increase in the convergence rate is probably due to the smoother
solution which is obtained for u = ,6. The constant viscosity model is very
similar to the analysis of the viscous transonic equation made by Sichel for
transonic shock bifurcation,

11
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The numerical results presented herein were obtained using the explicit
marching procedure of Hafez and Lovell (Ref. 31) to update the u-component of
velocity after each relaxation cycle. In the present calculations it was found
that the convergence was enhanced by using mixed flow differencing techniques in
this marching procedure. However, this method is still sensitive to the mesh
size in the y-direction and hence should be replaced by an unconditionally stable
implicit comservation procedure. The implicit scheme suggested here is to re-
write Eq. (1) in terms of the speed q, namely,

-} (q sin 6) + 2 (q cos 0) = -0 (9)
ax 3)'

where,

*

y

tan9=%=- (10)

Equation (9) is treated as a single equation in q assuming © is known from the
previous iteration. Using proper upwind differencing of both x- and y-terms
leads to a stable calculation, Once q is known the density is calculated based
on Eq. (4). This scheme has been implemented with almost the same computational
rate as the explicit scheme previously used in Ref. 31.

Finally, in order to test the present inviscid analysis for stronger shock
waves, a model problem similar to Kooi's experiment (Ref. 24) was tested
numerically. In this experiment a normal shock impinges on a turbulent boundary
layer which results in a separation bubble shown in Fig. 9, which was reproduced
from Kooi's report (Ref., 24). For this case M, = 1.4 and the Reynolds number,
based on the momentum thickness at the start of the interaction, is 2 x 107,

The characteristics of the undisturbed boundary layer just upstream of the
interaction region are:

8= 6.6 mm; &'~ 1.06 mn, 8 = .49 wm, c¢ = .0019

The velocity profile utilized in this calculation is the same as that used
previously, Eq. (6), with € = ,031 for this case. Good agreement was found
between this wall-wake profile and the experimental data of Kooi as well as a
solution of the direct form of the present boundary-layer analysis to be
discussed in the next section. A uniform grid of 80 streamwise points and 40
transverse points was used with 8x/6 = 0.3 and Ay/§ = 0.166 in the
calculation. Convergence was obtained using successive g;errelaxation in about
500 iterations when the maximum residual decreased to 10 ~.,

12
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Figures 10 and 11 show the computed Mach contours for this case; in Fig. 10
the viscous displacement thickness has been ignored whereas in Fig. 11 a smooth
approximation to the displacement thickness measured experimentally by Kooi has
been included. Comparison of the Mach contours for these two calculations shows
that the effect of the shock wave propagates further upstream when the viscous
displacement effect is included and produces a resulting flow field picture which
is in more qualitative agreement with that measured by Kooi than when the
displacement thickness is ignored. Additional calculations showed that for
higher Mach numbers the effects of §* is even more pronounced. In all of these
calculations the pressure distribution at different y-levels was observed to
become increasingly steeper with increased distance from the surface which is in
qualitative agreement with the experimental measurements of Kooi (Ref. 24),

In these calculations the vorticity generated by the shock waves has not
been accounted for and thus there is no shear layer in these results as there was
in the experiment of Kooi due to shock bifurcation. Furthermore, in the present
calculation the vorticity has been assumed to be a function of y only, i.e., w =
w(y), instead of w/p = w/p (¢). These assumptions can be overcome in the stream
function formulation using a shock detection procedure and a spline fit for the
vorticity as a function of the stream function. However, it appears that this
procedure will be quite tedious and hence a new conservation method which
eliminates the need for shock detection (or shock fitting), and vorticity
tracking along streamlines is currently under development,

13
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VISCOUS ANALYSIS

The viscous analysis currently under development in the present program is a
generalization of the previous inverse boundary-layer method of Carter (Ref. 32)
for the inclusion of normal pressure gradients and imbedded shock effects., In
this new formulation the streamwise pressure gradient 3dp/dx, is now considered to
be a function of both x and y. In this section a brief description of this
approach will be given and results obtained for a model problem with separated
flow and normal pressure gradients will be discussed.

In the present strong interaction flow model, shown schematically in Fig. 2,
it is assumed that the inviscid flow is displaced outward due to the rapid bound-
ary-layer growth which occurs downstream of the shock wave. However, the present
problem is more complicated than conventional displacement thickness interaction
since the usual assumption that the inviscid flow over the displacement body is
invariant on the scale of the boundary-layer thickness is no longer applicable,
As a result the usual definition of the displacement thickness must be gener-
alized to account for this variation which leads to the defintion,

(] ©
of Pudy =6£ Pjudy (1)

where the left integral is for the viscous flow and the right integral in which
p; and u; are both dependent on y, is for the inviscid flow over the dis-
placement body. Equation (11) insures that the mass flow is conserved between
the viscous and the displacement induced inviscid flow.

Using this generalized definition of the displacement thickness, Kooi (Ref.
24) deduced several important conclusions from his experimental data for tran-
sonic shock-wave boundary-layer interaction which have been utilized in the
development of the present formulation. First, he observed that the measured
initial pressure rise over the digplacement body agreed very well with that
computed from simple wave theory in the supersonic portion of the flow which
strongly supports the use of the displacement body concept for this flow.
Second, he observed good agreement between his measured normal pressure gradients
and that computed from gimple wave theory for the inviscid flow over the
generalized displacement body. As a result of this observation the streamwise
pressure gradient, 3p/3x in the boundary-layer momentum equation

14




R82-915712-~1

Pu + pv

*-%%*%("t g.;-.) (12)

e
e

is assumed in the present formulation to be that of the rotational inviscid flow
over the generalized displacement body. For the transonic problem under study
this pressure gradient, which depends on both x and y, will be determined from
the compressible stream function approach discussed earlier thereby accounting
for the flow turning and hence normal pressure gradients and imbedded shock
effects in the boundary layer.

In order to facilitate the numerical solution, the x-momentum, continuity,
and energy equations are written in displacement body coordinates in which a
modified form of the Levy-Lees transformation is used to transform these
governing equations. At the present time the curvature of the displacement body
has been neglected; however, this effect can be included later in a relatively
straight forward manner. Based on previous work for separated boundary layers, it
was decided to recast the governing equations and boundary conditions into an
inverse formulation in which the pressure on the displacement body is deduced
from the solution of the viscous equations for a prescribed streamwise
distribution of boundary-layer perturbation mass flow

m= 95*“6* &* (13)

where 05* and u5* denote the inviscid density and tangential velocity

over the displacement body and 6  is the generalized displacement thickness
defined in Eq. (11). At the wall the usual boundary conditions are imposed; at
the outer edge of the boundary layer the viscous solution is required to merge
smoothly into the inviscid solution as shown in Fig. 4 and thus the following
conditions are imposed at each x-location.

u > uly), v+ y.(y) (14)

where the subscript i denotes the inviscid solution. Note that the condition on
the stream function, which is used instead of the v-component of velocity, auto-
matically guarantees that the mass flow condition given in Eq. (11) is satisfied.
In addition the 9p/9x term, which is assumed to be known from the inviscid solu-
tion, was rewritten in terms of the inviscid convection terms normalized with
respect to the flow along the displacement body in the same manner as the
boundary-layer convection terms. This last step is of critical importance since
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it guarantees that the outer boundary conditions are asymptotic and can be
imposed at any y-location provided the viscous stress terms are negligible which
occurs as the boundary-layer edge is approached. The transformed governing
equations and boundary conditions for the generalized inverse boundary-layer
formulation were recently presented as part of a paper by Carter and Vatsa (Ref.
36). This paper is included in this Annual Report as Appendix A.

In order to test the convergence properties of the numerical scheme for this
aew formulation, a model problem for low speed separated flow was analyzed. The
perturbation mass flow, m, which was prescribed for this model problem, is shown
in Fig. 12 to depart rapidly from a flat plate turbulent flow distribution at
X/L = 0.4 which is characteristic of the sudden boundary-layer growth which
occurs when a normal shock wave impinges on a turbulent boundary-layer. Down-
stream of this rapid increase the displacement thickness typically reaches a
maximum value and then decreases as the downstream adverse pressure gradient
becomes smaller., The inviscid y-variation of the streamwise pressure gradient
was imposed in the present formulation by assuming a linear variation of the
inviscid velocity, u;(x,y) across the boundary layer. The slope of this
imposed linear variation was assumed to vary continuously from zero at the
initial station X/L = 0.4 to a maximum at X/L = 0.45 and then back to zero at X/L
= 0.6, For comparison purposes first-order boundary-layer calculations were also
made in which 3p/dx was assumed to be a function of x only by setting u;(x,y) =
ue(x), where u_ is the inviscid flow velocity tangent to the displacement
body.

e

The computed skin friction and displacement body pressure distributions both
with and without normal pressure gradients are shown in Figs, 13 and 14,
respectively. It is observed in Fig. 13 that the rapid increase in the pre-
scribed displacement thickness distribution results in a separated flow which
extends from X/L = 0.4]1 to X/L = 0.49., Both the skin-friction and displacement
body pressures show only minor changes due to the inclusion of an imposed normal
pressure gradient; however comparison of the velocity profiles in Fig. 15 shows
significant effects particularly in the outer part of the boundary layer. The x-
location of these profiles is indicated on the prescribed perturbation mass flow
distribution in Fig. 12, Figure 15 shows that the computed profiles blend
smoothly with the prescribed linear variation in the inviscid velocity at the
boundary-layer edge. Numerical tests were performed which indicated that the
calculations are independent of where the outer boundary conditions are imposed
provided this location is placed sufficiently far from the the wall. The
variation across the boundary layer of the ratio of the pressure coefficient to
that at the displacement body is shown in Fig. 16 in which the location of the
boundary-layer edge is indicated on each of the pressure distributions. It is
observed that signficant pressure variation occurs across the boundary layer in
this model problem with the maximum variation being 40 percent at X/L = 0.45.

16

, Py P : Ao - PPN I ST W P




\d
3

.
o A

RB2-915712-1

Y, s

No numerical difficulties were encountered in obtaining the solution for
this model problem utilizing this new inverse formulation for separated flows.
The key feature of this formulation is that the equations have been written such
that the boundary-layer solution is required to merge smoothly with the inviscid
flow over the generalized displacement body as the boundary-layer edge is
approached,

Work has been initiated on the Kooi transonic shock boundary-~layer
interaction utilizing the first-order version of the boundary-layer analysis des-
cribed in this section. The boundary-layer was computed from the leading edge of
the flat plate by using the direct mode (pressure prescribed) of this analysis.
The result of this calculation provides the upstream flow conditions for the
shock interaction problem. In addition this relatively straightforward calcu-
lation provides an opportunity to check the accuracy of the present formulation
against a conventional finite-~difference boundary-layer analysis, Figure 17
shows a comparison of these results with those obtained by using the UTRC ABLE
(Analysis of the Boundary Layer Equations) code (Ref. 37) along with the avail-
able experimental data of Kooi (Ref. 24). 1In both of these boundary-layer cal-
culations instantaneous transition was assumed to occur at 40 mm from the plate
leading edge which corresponds to the streamwise location of the roughness strip
used by Kooi in his experiment to induce transistion from laminar to turbulent
flow. Figure 17(a) shows excellent agreement between the two boundary-layer
predictions for the displacement thickness although both analyses somewhat
underpredict the value of §* quoted by Kooi. Figure 17(b) shows that the
computed skin friction distributions are in excellent agreement with each other
and with the value obtained by Kooi at x = 426 mm, which he deduced from a
Clauser velocity profile plot suitably corrected for compressibility. In
addition excellent agreement is observed in Fig., 17(c) between the computed and
measured velocity profile. This velocity profile is the same as that which was
imposed in the inviscid calculation for the Kooi case, as was discussed
previously,

Prior to a viscous analysis of the Kooi case, a comparison was made between
the first-order version of the inverse boundary-layer formulation developed in
the present effort and the previous method (Ref. 32) for the axisymmetric tran-
sonic shock induced separation case shown in Fig. 1. Although these two for-
mulations are similar in overall approach they differ significantly in detail.
Hence it was desired to make a comparison between these two approaches for the
same input perturbation mass flow (Eq. 13) distribution which, in this case, was
that deduced from the viscous-inviscid interation calculation for which the
interacted pressure is shown in Fig. 1. The results obtained from these two
inverse boundary-layer formulations are in good agreement thereby indicating that
the first order version of the newly developed inverse boundary-layer formulation
yields es-entially the same results as the analysis used heretofore.
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For the Kooi case the perturbation mass flow, given in Eq. (13) and prescri-
bed for the first-order inverse boundary-layer analysis, was computed from the
distribution of displacement thickness deduced experimentally by Kooi along with
the experimental wall pressure distribution which was used to find pgu, from
one-dimensional isentropic flow theory. Kooi's experimental §,-distribution is
shown in Fig. 18(a) with the streamwise position of the normal shock also
indicated. After the inverse boundary-layer computation was completed and
Peue deduced from the solution, the displacement thiikness was then computed
from the prescribed perturbation mass flow m = peueG ‘and is shown in Fig.
18(a). Even though the present calculation overpredicted the pressure by 10
percent as will be discussed below for Fig. 18(b), this inaccuracy has only a
small effect on the product P u, since it is 0(1) for transonic speeds.

Hence the close agreement as shown in Fig. 18(a) of the computed displacement
thickness with that determined experimentally by Kooi indicates that the present
analysis was made for the experimental displacement thickness expressed in terms
of the perturbation mass flow parameter, m.

Comparison of the computed and experimental wall pressure and skin friction
distributions are shown in Figs. 18(b) and 18(c), respectively. It is observed
that the present analysis overpredicts the experimental wall pressure and corres-
pondingly this stronger adverse pressure gradient results in a larger separated
flow region than that observed experimentally by Kooi as can be seen in Fig,
18(c). Similarly the present analysis over predicts the boundary-layer thickness
as shown in Fig. 19. At the present time it is not clear whether the differences
between the theory and experiment shown in Figs. 18 and 19 are attributable to
the use of an algebraic eddy viscosity model or the lack of normal pressure
gradient effects in the calculation. In the next phase of this contract, work
will focus on further development of the inviscid stream function analysis so
that the input for the viscous analysis will include this effect.

18
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CONCLUDING REMARKS

A viscous-inviscid flow interaction model has been developed for the strong
interaction which occurs when a transonic normal shock impinges on a turbulent
boundary-layer. The case of interest in the present study is where the shock is
of sufficient strength to result in boundary-layer separation. In the phase of
this work just completed, the viscous and inviscid analyses have been separately
developed and demonstrated to be capable of analysis in this transonic flow
regime, 1In the next phase of these two analyses will be iteratively coupled
together for the prediction of transonic shock induced separated flow.

19
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ANALYSIS OF SEPARATED BOUNDARY-LAYER FLOWS

J. 2. Carter and V. N. Vatsa
United Technologies Research Center
East Hartford, CT 06108/USA

INTRODUCTION

The development of computational procedures for the analysis of separated
boundary-layer flows continues to be an active research area éince flow separation
plays an important role in determining the upper limit of performance of aerodynamic
configurations in both external and internal flow. The objective of this paper is to
present an overview of a method for predicting the strong interaction between the
viscous and inviscid flows vhich occurs when flow separation exists. In the first
part of this paper, a nev inverae boundary-layer procedure is briefly presented
wvhich approximately accounts for normal pressure gradients that can be important in
strongly interacting flows. The second part of this paper focuses on viscous-
inviscid interacting flows where the viscous formulation is first-order since the
pressure is assumed constant across the boundary layer. Results obtained with this
procedure for three separated flow problems are presented: 1) transitional separation
bubbles near airfoil leading edges, 2) subsonic boattail separated turbulent flow,
and 3) transonic turdulent shock wave boundary-lsyer interaction on an axisymmetric
bump configuration. Comparisons with experimental data and solutions of the Navier-
Stokes equations, where available, are also shown.

VISCOUS ANALYSIS INCLUDING NORMAL PRESSURE GRADIENTS

Although the occurrence of flow separation does not lead in all cases
to significant normal pressure gradients in the viscous region, there are strongly
interacting flows in which this effect can be important. For example, it has been
observed experimentally that significant normal pressure gradients are induced in
the viscous region when a transonic normal shock wave, of sufficient strength to
result in flow separation, impinges on an incoming flat plate turbulent boundary
layer. As a first step toward the inclusion of normal pressure gradients in a
viscous-inviscid interaction analysis, a generalization of the previous inverse
boundary-layer formulation developed by Carterl 14 presented in which the pressure
p(x,y) is set equal to the invigcid pressure pi(x.y). wvhich is deduced from the
inviscid flow over the generalized displacement thickness given by

- ‘ .
;{’pu'v !nwdy o

where the i-subscripted variables denote inviscid flow quantities. In this inter-
action model, vhich is similar to that proposed by LeBalleur? » the inviscid flow is
pernitted to vary over the scale of the boundary layer in con:rut wvith the u:ul
first order assumption of constent pressure, p(x,y) = Py (x,8), vhere Py (x:8™)

is the inviscid pressure at the displacement thickness.

In order to facilitate the finite-difference sclution of this nev forsulatiom,
the x-momentum, continuity and energy equations are transformed with a modified form
of the Levy-lees transformation given by:

L

L rrpmpte

vhere x and y are the coordinates along and normal to the surface, respectively,
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"' and the &*- subscripted variables denote inviscid quantities on the displacement body.
< Based on previous work for separated boundary layers, the governing equations and
boundary conditions are cast into an inverse formulation in which the preasure on

k the displacement body is deduced from the solution of the viscous equacions for a

: ptncribcd streamvise distribution of boundary-layer perturbation msss flow, = =

p; u; Iy 5% The key to this inverse formulastion is the introduction of & perturba-
tion atru- function, f which is related to the usual stream function ¥ by:

w' m‘ﬂ—?’#% )

vhere y, 1s the deviation of the inviscid stream function ¥y from the usual first-
order linear variastion and is given by ¥ = ¥; - ®(n-1). With this formulation the
surface boundary condition, ¥ = O becomes f = 0 since ¥y = 0 st the wall:“the outer
boundary condition, ¥ = V4 a8 n + =, becomes £+ 1. The use of the stream function
automatically guarantees :hat Eq. (1) 1is satisfied.

The transformed boundary-layer equations are written as follows in which the
pressure gradient 3p/3x has been set equal to the inviscid pressure gradient expressed
in the present boundary-layer varisbles:

%-n-ﬁnﬁ!‘- %‘-",,A )
mizF -g?’-ms%- [m(n-?h%]%-mtﬁ(ﬂﬁ'-ﬂ")
(5)
#__ oy
ik bbb 2108 2
u#pra--m——[m(v;-?)wd]-la
®)

#3"[ (5 Pr.)av ]"av("(' %’lﬁl

in which the following definitions have deen used

]
._ TR Be b o, g1 Sy
b pig v TR R v S,

In these equations ¢ is the eddy viscosity coefficient for turbulent flows for which
the algebraic turbulence model of Cebeci-Smith? has been used. The laminar and

g turbulent Prandtl numbers are demoted by Pr and Pry, respectively. Equations (4)-

1 (6) are solved with an implicit finite-difference scheme for f, F, g and the unknown
) pressure gradient parameter 8 for a prescrided m-distridution snd with the inviscid
flow soclution over the generalised displacement body sssumed known. The boundary
conditions are given by

X n:0 Fsfa0 gog,

r The density is deduced from the state equation o= (ofl;) /T after the pormalized

i static temperature T 1s deduced from the definition of total enthalpy, . 4n

) important feature of this formulation is that as the boundary-layer edge is spprosched
and the viscous shear and heat conduction terms vanish, the viscous flow solution is
required to ssymptotically approach the iaviscid solution over tha generaliszed

(8)

-
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displacement body. Further details of this generalized inverse boundary-layer formula-
tion and computed examples are given by Carter and Hafez.

The computed results presented in this paper were obtained with a first-order
viscous formulation which is deduced by setting ¥, = O and By = Pi = 1 in Eqs. (4)~
(6). In the actual calculations the firgt-order inverse boundary~layer formulation
presented by Carter® vas used: however, these two inverse boundary-layer formulations
are quite similar and one can easily be derived from the other by a slight change in
the definition of the perturbation stresm function, transformed normal coordinate,
and the pressure gradient parameter.

INTERACTION ITERATION PROCEDURE

The present analysis is dased on & global viscous-inviscid iteration technique,
previously presented by Carter,” in which the inverse boundary~layer solution is
solved iteratively with a direct snalysis of the inviscid flow including injection
to represent the displacenent thickness effects. The key feature of this iteration
procedure is the simple update formula

m'*! s mi ll on(%"--l» (9

vhere v is the relaxation factor, and uy and u., denote the viscous and inviscid
predictions, respectively, of the velocity tangent to the displacement body for the
w-distribution at the ith global iteration. This update procedure, which 1is similar
to that used by LeBalleur,” is general as it has been used with a variety of inverse
boundary-layer and direct inviscid solution procedures as pointed out in Ref. 1.

RESULTS AND DISCUSSION

In this section three applications of the first-order viscous-inviscid inter-
sction analysis are presented. In each case a brief discussion is given of the
particular features of each analysis and the inviscid solution procedure which was
utilized. References are given for each of these applications in which & more
detailed discussion is presented.

Airfoil Leading-Edge Separation Bubbles

The first application of this interaction theory is for the transitional
separation bubble which occurs near the lesding edge ¢f an airfoil. 1If the Reynolds
nunber is sufficiently low such that the boundary layer remains laminar up to the
point of minimum pressure, then the onset of the adverse pressure gradient gemerally
results in separation of the laminar boundary layer; subsequently, transition from
laminar to turbulent flow occurs in the sepsrated shear layer, and if the bubble does
pot burst, then turbulent reattachment occurs further downstream. Since the stresm-
wise length scale of this viscous-inviscid interaction is typically only a few percent
of the airfoil chord, this localized interaction is treated as a perturbation to a
global viscous airfoil analysis, wvhich in the present effort was the GRUMFOIL code
developed by Melnik, et. al’., The deviation of the edge velocity, ug, due to the
transitional budbble, from the reference global airfoil solution is repressnted by a

Cauchy integral givem by
o i
Uap *Va g + +L 3‘{ s-§

in which the source strength is proportional to the streamvise derivative of the
corresponding devistion in the displacement thickness.

(10)
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The local interaction analysis was applied to the transitional separation bubble,
measured experimentally by Gaults. vhich occurs at the lesding edge of a NACA 66_-018
‘ airfoil at & chord Reynolds number of 1.5 x 10° and a = 12 deg. At this angle o?

] sttack, the reference solution, obtained from the GRUMFOIL code, was found to

- significantly overpredict the 1lift coefficient for this airfoil. Correspondingly
T the pressure in the strong acceleration region was overpredicted thereby providing
- ’ an insccurate reference solution for this case. These errors are probadly due to

' the inability of the GRUMFOIL code to correctly model the 1lift decremant dus to the
massive trailing edge separation which occurred in this case at 0.75 chord on the
upper surface. In order to compensate for this problem, the GRUMFOIL code was run
at a reduced angle of attack at 11.25° which provided a much better match of the
experimental 11ft coefficient snd the pressure distribution between the stagnation
point and the peak suction region ss shown in Fig. 1l(a).

The transition model usad in the present calculation is the streamwise inter-
mittency function of Dhawan and Narasimha’ which requires the specification of the
onset and length of the transition region. In the present case the onset of tran~
sition vas assused to occur midway between the experimental separation point and the
"bresk" point in the experimental pressure distridbution shown in Fig. 1. The length
of the transition region vwas established 80 that the intermittency function had &
value of v = 0.5 at the experimental pressure "break” point.

The computed results for this case are shown in Figs. 1(a) and 1(b) for the
pressure, and skin friction and displacement thickness, respectively. The good
agreenent shown betwsen the predicted results and Cault's pressure data and measured
separation point verifies cthe use of a local interaction model for the airfoil leading
edge transitional bubble problem. Figure 1(s) also shows the inviscid airfoil pressure
distribucion which was obtained from the GRUMFOIL code with a = 11.25°. The large
difference between this solution and the viscous airfoil solution obtained with the
GRUMFOIL code shows the importance of including the viscous effects in the reference
solution which 1s input to the present perturbation interaction analysis. Further
details of this 1Eteuction snalysis and other computed examples are presented by
Carter and Vatsa.

Subsonic Bosttail Separsted Turbulent Flow

The second application presented in this paper is the subsonic turbulent separated
flow in the juncture region of an axisymmetric boattail-sting configuration. The
conaervative full potential snalysis of Green”’ was used to represent the outer
inviscid flow. In order to reduce the injection velocity associated with the large
displacement thickness growth vhich occurs in the boattail-sting juncture region, the
inviscid flov was solved over a shear layer coordinate vhich vas assumed a priori to
aspproximate the displacement body position. Injection was then used along this shear
layer coordinate, but the injection magnitude was significantly reduced since it vas
now proportional only to the difference between the assumed and the actusl displacement
body locations. The boundary-layer equations are aleo expressed in terms of this
shear layer oriented coordinste system, but the usual fors of these equations 1is
recovered with the use of the Prandtl transposition theorea.

Pigure 2 shows the computed pressure and skin friction distributions from doth
the present interaction analysis and the numerical solution of the Nevier-Stokes
oquuoum for the M, = 0.7 flow over the circular-arc boattail-sting configuration
' msasured experimentally by Reubush.31 Figure 2 shows excellent agresment between the
b twvo theoretical analyses, theredy confirming that the neglected terms in the
approximate intersction analysis are of secondary importance im this separsted flow
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case. Nonetheless it is observed that both analyses overpredict the experimental
pressure in the separated region and predict the separation point too far downstreas.
This discrepancy was thought to be due to the use of the Cebeci-Smith algebraic
turbulence model as it has been observed in other analyses of separated flow to
result in an underprediction of the displacement thickness and a corresponding over-
prediction of the pressure in regions of strong adverse pressure gradient. This
observation led Shang and ankeyu to modify the algebraic turbulence model through
a global streamwise relaxation model which approximately accounts for the so-called
"history of the flow." Figure 3 shows the computed results which were obtained with
the Shang-Hankey model implemented into both the interaction and the Navier-Stokes
analyses. The overall agreement with the experimental data is significantly improved
with the use of this model, although it is observed that the interacting boundary-layer
results shov greater sensitivity to this modification than the Navier-Stokes analysis
theredy giving better agreement with the experimental data,

Transonic Shock Wave Boundary Layer Ingeraction

The third application of this viscous-inviscid interaction approsch is the
transonic shock induced separated flow over an axisymmetric circular arc-bump con-
figuration for which experimental data and a solution of the Navier-Stokes equations
were given by Johnson, et, all Calculations using the present approach for this
configuration have previously been presented by Cartct;l howvever, several numerical
improvements have been made in the interim and these are briefly discussed here with
more details given in Ref, 14,

In the previous cslculations it was found necessary to use numerical smoothing to
elininate oscillations which occurred v’ en the fully conservative potential analysis
of Green? was used with the inverse boundary-layer analysis. It was found in the
present vork that these oscillations were elimirgted, and hence the need for smoothing,
by placing a grid point on the shear layer coordinate to precisely correspond to the
location of the body-sting corner, and by using central differencing of the displace-
ment thickness in the inviscid transformed plane to numerically compute the injection
velocity., In addition, it was found that using the same x-grid in both the viscous
and inviscid calculations, which eliminates interpolation between the two solutions,
enhanced the overall interaction convergence rate, Figure 4 shows the computed
pressure and displacement thickness distributions in comparison with the experimental
data and Navier-Stokes calculation presented by Johmson, et. al.l3 The interaction
calculations vere msade with both the nonconservative potential flow sanalysis of
Southl> and the conservative analysis of Gruu.9 In contrast vith the Navier-Stokes
solution both analyses show good agreement with the data for the shock wave position.
It 4s wvell known that in an inviecid analysis a counservative potentisal flow calculation
predicts a stronger shock wave located downstream of that given by a nonconservative
computation. The present results show that this difference is significantly reduced
vhen viscous interaction effects are included since the stronger shock given by the
conservative anslysis produces s larger displacement thickness, as shown in Fig. 4(b),
thereby weakening the shock and moving it forward to place it in better agreement with
that predicted by the sonconsarvative analysis.

As vas found in the subsonic boattail calculation, this interaction calculation
overpredicts the pressure and underpredicts the displacement thickness in comparison
with the data in the body-sting juncture region. This difference is probebly due to
the algedraic turbulence model and can be substantially reduced by use of the Shang-
lnbyh model or by reducing the Clauser constant, as was shown by c.:r.url. in the
outer region eddy viscosity model,




CONCLUDING REMARKS

The spplicability of the viscous-inviscid interaction analysis presented herein
to various separsted flow problems has been demonstrated, Overall, good agresment
with experimental dats has been observed with this analysis, although it 1is con- 1
cluded from these calculstions that the use of san algebric turbulence model 1is 4
insdequate for flows with significant turbulent separated flow. In addition, the .
generalization of the first-order inverss boundary-lsyer analysis to approximately
sccount for norsal pressure gradients has been presented. It pow remains to combine
this new viscous analysis vith an inviscid solution procedure and demounstrate its
use in viscous-inviscid interscting flows.
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